Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 623(7985): 71-76, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37604186

RESUMEN

Electrochemical synthesis can provide more sustainable routes to industrial chemicals1-3. Electrosynthetic oxidations may often be performed 'reagent-free', generating hydrogen (H2) derived from the substrate as the sole by-product at the counter electrode. Electrosynthetic reductions, however, require an external source of electrons. Sacrificial metal anodes are commonly used for small-scale applications4, but more sustainable options are needed at larger scale. Anodic water oxidation is an especially appealing option1,5,6, but many reductions require anhydrous, air-free reaction conditions. In such cases, H2 represents an ideal alternative, motivating the growing interest in the electrochemical hydrogen oxidation reaction (HOR) under non-aqueous conditions7-12. Here we report a mediated H2 anode that achieves indirect electrochemical oxidation of H2 by pairing thermal catalytic hydrogenation of an anthraquinone mediator with electrochemical oxidation of the anthrahydroquinone. This quinone-mediated H2 anode is used to support nickel-catalysed cross-electrophile coupling (XEC), a reaction class gaining widespread adoption in the pharmaceutical industry13-15. Initial validation of this method in small-scale batch reactions is followed by adaptation to a recirculating flow reactor that enables hectogram-scale synthesis of a pharmaceutical intermediate. The mediated H2 anode technology disclosed here offers a general strategy to support H2-driven electrosynthetic reductions.

3.
J Org Chem ; 86(5): 3999-4006, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33606531

RESUMEN

Aryl and heteroaryl fluorides are growing to be dominant motifs in pharmaceuticals and agrochemicals, yet they are rare in both nature and commodity chemicals. As a consequence, there is an increasingly urgent need to develop mild, cost-effective, and scalable methods for fluorination. The most straightforward route to synthesize aryl fluorides is through the halide exchange "halex" reaction, but conditions, cost, and atom economy preclude most available methods from large-scale manufacturing processes. We report a new approach that leverages the cooperative action of 18-crown-6 ether and tetramethylammonium chloride to catalytically access the reactivity of tetramethylammonium fluoride and achieve halex fluorinations under mild conditions with operational ease. The described methodology readily converts both heteroaryl chlorides and aryl triflates to their corresponding (hetero)aryl fluorides in high yields and purities.


Asunto(s)
Cloruros , Halogenación , Catálisis , Fluoruros , Paladio
4.
Chem Sci ; 11(25): 6450-6456, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-34094110

RESUMEN

The use of chiral square planar gold(iii) complexes to access enantioenriched products has rarely been applied in asymmetric catalysis. In this context, we report a mechanistic and synthetic investigation into the use of N-heterocyclic (NHC) gold(iii) complexes in γ,δ-Diels-Alder reactions of 2,4-dienals with cyclopentadiene. The optimal catalyst bearing a unique 2-chloro-1-naphthyl substituent allowed efficient synthesis of functionally rich carbocycles in good yields, diastereo- and enantioselectivities. Transition state and multivariate linear regression (MLR) analysis of both catalyst and substrate trends using molecular descriptors derived from designer parameter acquisition platforms, reveals attractive non-covalent interactions (NCIs) to be key selectivity determinates. These analyses demonstrate that a putative π-π interaction between the substrate proximal double bond and the catalyst aromatic group is an essential feature for high enantioselectivity.

5.
Nat Metab ; 1(11): 1089-1100, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-32072135

RESUMEN

Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.


Asunto(s)
Metabolismo Energético/fisiología , Neuronas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Glucemia/metabolismo , Dieta , Metabolismo Energético/genética , Hipotálamo/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/prevención & control , Ubiquitina-Proteína Ligasas/genética
6.
Acc Chem Res ; 51(10): 2447-2455, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30272943

RESUMEN

The field of supramolecular chemistry has its foundation in molecular recognition and selective binding of guest molecules, often with remarkably strong binding affinities. The field evolved to leverage these favorable interactions between the host and its guest to catalyze simple, often biomimetic transformations. Drawing inspiration from these early studies, self-assembled supramolecular hosts continue to capture a significant amount of interest toward their development as catalysts for increasingly complex transformations. Nature often relies on microenvironments, derived from complex tertiary structures and a well-defined active site, to promote reactions with remarkable rate acceleration, substrate specificity, and product selectivity. Similarly, supramolecular chemists have become increasingly intrigued by the prospect that self-assembly of molecular components might generate defined and spatially segregated microenvironments that can catalyze complex transformations. Among the growing palette of supramolecular catalysts, an anionic, water-soluble, tetrahedral metal-ligand coordination host has found a range of applications in catalysis and beyond. Early work focused on characterizing and understanding this host and its various host-guest phenomena, which paved the path for exploiting these features to selectively promote desirable chemistries, including cyclizations, rearrangements, and bimolecular reactions. Although this early work matured into achievements of catalysis with dramatic rate accelerations as well as enantioenrichment, the afforded products were typically identical to those produced by background reactions that occurred outside of the host microenvironment. This Account describes our recent developments in the application of these anionic tetrahedral hosts as catalysts for organic and organometallic transformation. Inspiration from natural systems and unmet synthetic challenges led to supramolecular catalysis displaying unique divergences in reactivity to give products that are inaccessible from bulk solution. Additionally, these tetrahedral assemblies have been shown to catalyze a diverse range of transformations with notable rate acceleration over the uncatalyzed background reaction. The pursuit of complexity beyond supramolecular catalysis has since led to the integration of these tetrahedral catalysts in tandem with natural enzymes, as well as their application to dual catalysis to realize challenging synthetic reactions. Variation in the structure, including size and charge, of these tetrahedral catalysts has enabled recent studies that provide insights into connections between specific structural features of these hosts and their reactivities. These mechanistic studies reveal that the solvent exclusion properties, hydrophobic effects, confinement effects and electrostatic effects play important roles in the observed catalysis. Moreover, these features may be leveraged for the design of supramolecular catalysis beyond those described in this Account. Finally, the supramolecular chemistry detailed in this Account has presented the opportunity to emulate some of the mechanisms nature engages to achieve catalysis; however, this relationship need not be entirely unidirectional, as the examples describe herein can stand as simplified model systems for unravelling more complex biological processes.

7.
Cell ; 175(2): 514-529.e20, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220461

RESUMEN

The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.


Asunto(s)
HDL-Colesterol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de la Membrana/ultraestructura , Células 3T3 , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Alineación de Secuencia , Esteroles/metabolismo
8.
J Am Chem Soc ; 140(21): 6591-6595, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29767972

RESUMEN

We have demonstrated that the microenvironment of a highly anionic supramolecular catalyst can mimic the active sites of enzymes and impart rate accelerations of a million-fold or more. However, these microenvironments can be challenging to study, especially in the context of understanding which specific features of the catalyst are responsible for its high performance. We report here the development of an experimental mechanistic probe consisting of two isostructural catalysts. When examined in parallel transformations, the behavior of these catalysts provides insight relevant to the importance of anionic host charge on reactivity. These two catalysts exhibit similar host-substrate interactions, but feature a significant difference in overall anionic charge (12- and 8-). Within these systems, we compare the effect of constrictive binding in a net neutral aza-Cope rearrangement. We then demonstrate how the magnitude of anionic host charge has an exceptional influence on the reaction rates for a Nazarov cyclization, evidenced by an impressive 680-fold change in reaction rate as a consequence of a 33% reduction in catalyst charge.

9.
Org Lett ; 20(8): 2156-2159, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29589943

RESUMEN

A simplified approach to quantum yield ([Formula: see text]) measurement using in situ LED NMR spectroscopy has been developed. The utility and performance of NMR actinometry has been demonstrated for the well-known chemical actinometers potassium ferrioxalate and o-nitrobenzaldehyde. A novel NMR-friendly actinometer, 2,4-dinitrobenzaldehyde, has been introduced for both 365 and 440 nm wavelengths. The method has been utilized successfully to measure the quantum yield of several recently published photochemical reactions.

10.
Mol Cell Biol ; 38(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29507185

RESUMEN

The liver X receptors (LXRs) are ligand-activated nuclear receptors with established roles in the maintenance of lipid homeostasis in multiple tissues. LXRs exert additional biological functions as negative regulators of inflammation, particularly in macrophages. However, the transcriptional responses controlled by LXRs in other myeloid cells, such as dendritic cells (DCs), are still poorly understood. Here we used gain- and loss-of-function models to characterize the impact of LXR deficiency on DC activation programs. Our results identified an LXR-dependent pathway that is important for DC chemotaxis. LXR-deficient mature DCs are defective in stimulus-induced migration in vitro and in vivo Mechanistically, we show that LXRs facilitate DC chemotactic signaling by regulating the expression of CD38, an ectoenzyme important for leukocyte trafficking. Pharmacological or genetic inactivation of CD38 activity abolished the LXR-dependent induction of DC chemotaxis. Using the low-density lipoprotein receptor-deficient (LDLR-/-) LDLR-/- mouse model of atherosclerosis, we also demonstrated that hematopoietic CD38 expression is important for the accumulation of lipid-laden myeloid cells in lesions, suggesting that CD38 is a key factor in leukocyte migration during atherogenesis. Collectively, our results demonstrate that LXRs are required for the efficient emigration of DCs in response to chemotactic signals during inflammation.


Asunto(s)
Quimiotaxis/fisiología , Células Dendríticas/fisiología , Receptores X del Hígado/fisiología , ADP-Ribosil Ciclasa 1/metabolismo , Animales , Células Cultivadas , Células Dendríticas/citología , Inflamación , Metabolismo de los Lípidos , Receptores X del Hígado/genética , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Nucleares Huérfanos , Receptores Citoplasmáticos y Nucleares , Transducción de Señal
11.
Nat Med ; 24(3): 304-312, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29431742

RESUMEN

Nuclear receptors regulate gene expression in response to environmental cues, but the molecular events governing the cell type specificity of nuclear receptors remain poorly understood. Here we outline a role for a long noncoding RNA (lncRNA) in modulating the cell type-specific actions of liver X receptors (LXRs), sterol-activated nuclear receptors that regulate the expression of genes involved in cholesterol homeostasis and that have been causally linked to the pathogenesis of atherosclerosis. We identify the lncRNA MeXis as an amplifier of LXR-dependent transcription of the gene Abca1, which is critical for regulation of cholesterol efflux. Mice lacking the MeXis gene show reduced Abca1 expression in a tissue-selective manner. Furthermore, loss of MeXis in mouse bone marrow cells alters chromosome architecture at the Abca1 locus, impairs cellular responses to cholesterol overload, and accelerates the development of atherosclerosis. Mechanistic studies reveal that MeXis interacts with and guides promoter binding of the transcriptional coactivator DDX17. The identification of MeXis as a lncRNA modulator of LXR-dependent gene expression expands understanding of the mechanisms underlying cell type-selective actions of nuclear receptors in physiology and disease.


Asunto(s)
Aterosclerosis/genética , Colesterol/metabolismo , ARN Helicasas DEAD-box/genética , Receptores X del Hígado/genética , ARN Largo no Codificante/genética , Transportador 1 de Casete de Unión a ATP/genética , Animales , Células de la Médula Ósea/metabolismo , Colesterol/genética , Regulación de la Expresión Génica/genética , Humanos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Ratones , Regiones Promotoras Genéticas , Transcripción Genética
12.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29249357

RESUMEN

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Asunto(s)
Adipocitos/metabolismo , Ensamble y Desensamble de Cromatina , Metabolismo Energético , Interleucina-10/metabolismo , Termogénesis , Factores de Transcripción Activadores/metabolismo , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Células Cultivadas , Interleucina-10/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal
13.
J Chem Phys ; 147(13): 134304, 2017 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-28987119

RESUMEN

The photodissociation dynamics of the tert-butyl peroxy (t-BuOO) radical are studied by fast-radical-beam coincidence translational spectroscopy. The neutral t-BuOO radical is formed by photodetachment of the corresponding t-BuOO- anion at 700 nm (1.77 eV), followed by dissociation at 248 nm (5.00 eV). Photofragment mass and translational energy distributions are obtained. The major channel is found to be three-body fragmentation to form O, CH3, and acetone (83%), with minor two-body fragmentation channels leading to the formation of O2 + tert-butyl radical (10%) and HO2 + isobutene (7%). Experimental results show that the translational energy distribution for two-body dissociation peaks is close to zero translational energy, with an isotropic angular distribution of fragments. These results indicate that two-body fragmentation proceeds via internal conversion to the ground electronic state followed by statistical dissociation. For three-body dissociation, the translational energy distribution peaks closer to the maximal allowed translational energy and shows an anisotropic distribution of the plane of the dissociating fragments, implying rapid dissociation on an excited-state surface. A small shoulder in the three-body translational energy distribution suggests that some three-fragment dissociation events proceed by a different mechanism, involving internal conversion to the ground electronic state followed by sequential dissociation.

14.
J Am Chem Soc ; 139(37): 12943-12946, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28885017

RESUMEN

Computed descriptors for acyclic diaminocarbene ligands are developed in the context of a gold catalyzed enantioselective tandem [3,3]-sigmatropic rearrangement-[2+2]-cyclization. Surrogate structures enable the rapid identification of parameters that reveal mechanistic characteristics. The observed selectivity trends are validated in a robust multivariate analysis facilitating the development of a highly enantioselective process.


Asunto(s)
Alquinos/síntesis química , Ciclización , Dioxolanos/síntesis química , Oro/química , Alquinos/química , Catálisis , Cristalografía por Rayos X , Dioxolanos/química , Ligandos , Modelos Moleculares , Estructura Molecular , Estereoisomerismo
15.
Science ; 356(6344): 1272-1276, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28642435

RESUMEN

The biological properties of trifluoromethyl compounds have led to their ubiquity in pharmaceuticals, yet their chemical properties have made their preparation a substantial challenge, necessitating innovative chemical solutions. We report the serendipitous discovery of a borane-catalyzed formal C(sp3)-CF3 reductive elimination from Au(III) that accesses these compounds by a distinct mechanism proceeding via fluoride abstraction, migratory insertion, and C-F reductive elimination to achieve a net C-C bond construction. The parent bis(trifluoromethyl)Au(III) complexes tolerate a surprising breadth of synthetic protocols, enabling the synthesis of complex organic derivatives without cleavage of the Au-C bond. This feature, combined with the "fluoride-rebound" mechanism, was translated into a protocol for the synthesis of 18F-radiolabeled aliphatic CF3-containing compounds, enabling the preparation of potential tracers for use in positron emission tomography.


Asunto(s)
Química Farmacéutica/métodos , Fluoruros/química , Radioquímica/métodos , Boranos/química , Técnicas de Química Sintética , Oro/química , Tomografía de Emisión de Positrones , Trazadores Radiactivos
16.
J Am Chem Soc ; 139(23): 8013-8021, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28581740

RESUMEN

This study offers a detailed mechanistic investigation of host-guest encapsulation behavior in a new enzyme-mimetic metal-ligand host and provides the first observation of a conformational selection mechanism (as opposed to induced fit) in a supramolecular system. The Ga4L4 host described features a C3-symmetric ligand motif with meta-substituted phenyl spacers, which enables the host to initially self-assemble into an S4-symmetric structure and then subsequently isomerize to a T-symmetric tetrahedron for better accommodation of a sufficiently large guest. Selective inversion recovery 1H NMR studies provide structural insights into the self-exchange behaviors of the host and the guest individually in this dynamic system. Kinetic analysis of the encapsulation-isomerization event revealed that increasing the concentration of guest inhibits the rate of host-guest relaxation, a key distinguishing feature of conformational selection. A comprehensive study of this simple enzyme mimic provides insight into analogous behavior in biophysics and enzymology and aims to inform the design of efficient self-assembled microenvironment catalysts.

17.
Immunity ; 45(6): 1311-1326, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-28002731

RESUMEN

Liver X receptors (LXRs) are regulators of cholesterol metabolism that also modulate immune responses. Inactivation of LXR α and ß in mice leads to autoimmunity; however, how the regulation of cholesterol metabolism contributes to autoimmunity is unclear. Here we found that cholesterol loading of CD11c+ cells triggered the development of autoimmunity, whereas preventing excess lipid accumulation by promoting cholesterol efflux was therapeutic. LXRß-deficient mice crossed to the hyperlipidemic ApoE-deficient background or challenged with a high-cholesterol diet developed autoantibodies. Cholesterol accumulation in lymphoid organs promoted T cell priming and stimulated the production of the B cell growth factors Baff and April. Conversely, B cell expansion and the development of autoantibodies in ApoE/LXR-ß-deficient mice was reversed by ApoA-I expression. These findings implicate cholesterol imbalance as a contributor to immune dysfunction and suggest that stimulating HDL-dependent reverse cholesterol transport could be beneficial in the setting of autoimmune disease.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Enfermedades Autoinmunes/inmunología , Colesterol/metabolismo , Hipercolesterolemia/metabolismo , Animales , Enfermedades Autoinmunes/metabolismo , Antígeno CD11c/inmunología , Colesterol/inmunología , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Perfilación de la Expresión Génica , Hipercolesterolemia/inmunología , Receptores X del Hígado/inmunología , Receptores X del Hígado/metabolismo , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transcriptoma
18.
Cancer Cell ; 30(5): 683-693, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27746144

RESUMEN

Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRß-full agonist selectively kills GBM cells in an LXRß- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Colesterol/metabolismo , Glioblastoma/tratamiento farmacológico , Indazoles/administración & dosificación , Receptores X del Hígado/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Glioblastoma/metabolismo , Humanos , Indazoles/farmacología , Ratones , Resultado del Tratamiento
19.
J Am Chem Soc ; 138(30): 9682-93, 2016 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-27458778

RESUMEN

The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions.


Asunto(s)
Oro/química , Compuestos Organoplatinos/química , Catálisis , Hidrocarburos Yodados/química , Modelos Moleculares , Conformación Molecular , Oxidación-Reducción
20.
Nature ; 534(7605): 124-8, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251289

RESUMEN

Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.


Asunto(s)
Colesterol/metabolismo , Homeostasis/genética , Metabolismo de los Lípidos/genética , Receptores Nucleares Huérfanos/metabolismo , ARN Largo no Codificante/genética , Animales , Colesterol/biosíntesis , Colesterol/sangre , Dieta Occidental , Grasas de la Dieta/farmacología , Regulación de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Homeostasis/efectos de los fármacos , Ligandos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Receptores X del Hígado , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Nucleares Huérfanos/agonistas , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...